Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.consejodecomunicacion.gob.ec//handle/CONSEJO_REP/6735
Título : Reading Emotions in the Digital Age: A Deep Learning Approach to Detecting Anxiety During the COVID-19 Pandemic Through Social Media
Otros títulos : International Journal of Communication
Autor : Jeong, Jinwoo
Yoon, Sujin
Sohn, Dongyong
Choi, Young S.
Palabras clave : social
media
analysis
Fecha de publicación : 2023
Editorial : International Journal of Communication
Citación : Jeong, J., Yoon, S., Sohn, D., and Choi, Y. (2023). Reading Emotions in the Digital Age: A Deep Learning Approach to Detecting Anxiety During the COVID-19 Pandemic Through Social Media. International Journal Of Communication, 17, 22. Retrieved from https://ijoc.org/index.php/ijoc/article/view/20241/4332
Resumen : During an unprecedented crisis, such as the COVID-19 pandemic, people respond to increased uncertainty in their social surroundings, which often entails various emotional expressions, including fear and frustration. Anxiety is particularly important because it may serve as a symptomatic indicator of various social problems, such as the collapse of trust, polarized public opinions, and an increase in violence. Identifying the expressions of anxiety and tracking their fluctuations over time may lead to a better understanding of how people collectively cope with social crises. This study aims to develop a deep learning-based classification of anxiety and track how the degree of anxiety changed over time in the context of the COVID-19 pandemic. Using the bidirectional encoder representations from transformers (BERT) model, we extracted anxiety-laden messages from Twitter and examined how the longitudinal distribution of anxiety corresponded to the major waves of COVID-19 using intervention time-series analyses.
URI : https://repositorio.consejodecomunicacion.gob.ec//handle/CONSEJO_REP/6735
ISSN : 1932-8036
Aparece en las colecciones: Documentos internacionales sobre libertad de expresión y derechos conexos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Reading.pdfReading1,19 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.