Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.consejodecomunicacion.gob.ec//handle/CONSEJO_REP/6961
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorChang, Chung H.-
dc.contributor.authorRauchfleisch, Adrian-
dc.date.accessioned2024-03-26T17:58:58Z-
dc.date.available2024-03-26T17:58:58Z-
dc.date.issued2023-
dc.identifier.citationChan, C.,and Rauchfleisch, A. (2023). Bayesian Multilevel Modeling and Its Application in Comparative Journalism Studies. International Journal Of Communication, 17, 22. Retrieved from https://ijoc.org/index.php/ijoc/article/view/19570/4196es_ES
dc.identifier.issn1932-8036-
dc.identifier.urihttps://repositorio.consejodecomunicacion.gob.ec//handle/CONSEJO_REP/6961-
dc.description.abstractComparative approaches are frequently used in communication research, especially journalism studies. The purpose of this article is to argue that Bayesian multilevel regression is the most justifiable option for analyzing comparative data. We argue that it is the only approach that can simultaneously account for the non-atomicity (nested nature) and non-stochasticity (nonrandom sampling) of comparative data. Using the openly available Worlds of Journalism Study and useNews data sets, we demonstrate how to apply the Bayesian approach for the analysis of comparative data. We address the common challenges when using the Bayesian approach and highlight the advantages of posterior predictive checks for modeling checking.es_ES
dc.language.isoenes_ES
dc.publisherInternational Journal of Communicationes_ES
dc.subjectmodel reserches_ES
dc.subjectjournalismes_ES
dc.titleBayesian Multilevel Modeling and Its Application in Comparative Journalism Studieses_ES
dc.title.alternativeInternational Journal of Communicationes_ES
dc.typeArticlees_ES
Aparece en las colecciones: Documentos internacionales sobre libertad de expresión y derechos conexos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Bayesian.pdfBayesian831,18 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.