Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.consejodecomunicacion.gob.ec//handle/CONSEJO_REP/7960
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFernandez-Cruz, Ignacio-
dc.date.accessioned2024-09-30T21:16:06Z-
dc.date.available2024-09-30T21:16:06Z-
dc.date.issued2024-
dc.identifier.citationFernandez-Cruz, I. (2023). Rethinking Artificial Intelligence: Algorithmic Bias and Ethical Issues| How Process Experts Enable and Constrain Fairness in AI-Driven Hiring. International Journal Of Communication, 18, 21. https://ijoc.org/index.php/ijoc/article/view/20812/4456es_ES
dc.identifier.issn1932-8036-
dc.identifier.urihttps://repositorio.consejodecomunicacion.gob.ec//handle/CONSEJO_REP/7960-
dc.description.abstractOrganizations risk losing their competitive edge as they struggle to find and hire qualified talent. Hiring personnel turn to artificial intelligence (AI) tools to help acquire talent, increase efficiency, and reduce costs. Yet despite the best intentions for integrating fair and evidence-based systems, exacerbated levels of bias may occur from using these tools. Drawing from scholarship on process expertise and emerging practices of AI use at work, I provide a case study of 42 high-volume recruiters and uncover how hiring personnel enact and justify unsystematic sourcing practices within the confines of their held expertise, organizational demands, and technology choices. I explain how AI-based hiring decisions in organizations are context dependent and blend the capabilities of algorithmic-powered tools with choices and judgments made by process experts. I conclude by offering theoretical and practical considerations for expertise, hiring, and the integration of algorithms at work.es_ES
dc.language.isoenes_ES
dc.publisherInternational Journal of Communicationes_ES
dc.subjecthiringes_ES
dc.subjectfairnesses_ES
dc.subjectprocesses_ES
dc.titleRethinking Artificial Intelligence: Algorithmic Bias and Ethical Issues| How Process Experts Enable and Constrain Fairness in AI-Driven Hiringes_ES
dc.title.alternativeInternational Journal of Communicationes_ES
dc.typeArticlees_ES
Aparece en las colecciones: Documentos internacionales sobre libertad de expresión y derechos conexos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
How process experts.pdfHow process experts950,24 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.