Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.consejodecomunicacion.gob.ec//handle/CONSEJO_REP/7961
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorKim, Soojong-
dc.contributor.authorLee, Joomi-
dc.contributor.authorOh, Poong-
dc.date.accessioned2024-09-30T21:16:15Z-
dc.date.available2024-09-30T21:16:15Z-
dc.date.issued2024-
dc.identifier.citationKim, S., Lee, J., and Oh, P. (2023). Rethinking Artificial Intelligence: Algorithmic Bias and Ethical Issues| Questioning Artificial Intelligence: How Racial Identity Shapes the Perceptions of Algorithmic Bias. International Journal Of Communication, 18, 23. https://ijoc.org/index.php/ijoc/article/view/20814/4457es_ES
dc.identifier.issn1932-8036-
dc.identifier.urihttps://repositorio.consejodecomunicacion.gob.ec//handle/CONSEJO_REP/7961-
dc.description.abstractGrowing concerns indicate that automated decision-making (ADM) may discriminate against certain social groups, but little is known about how social identities of people influence their perception of biased automated decisions. Focusing on the context of racial disparity, this study examined if individuals’ social identities (white vs. People of Color) and social contexts that entail discrimination (discrimination target: the self vs. the other) affect the perceptions of ADM. A randomized controlled experiment (N = 604) demonstrated that a participant’s social identity significantly moderated the effects of the discrimination target on the perceptions of ADM. Among POC participants, ADM that discriminates against the subject decreased their perceived fairness and trust in ADM, whereas among white participants opposite patterns were observed. The findings imply that social disparity and inequality, and different social groups’ lived experiences of the existing discrimination and injustice should be at the center of understanding how people make sense of biased algorithms.es_ES
dc.language.isoenes_ES
dc.publisherInternational Journal of Communicationes_ES
dc.subjectautomatedes_ES
dc.subjecttrustes_ES
dc.subjectbiases_ES
dc.titleRethinking Artificial Intelligence: Algorithmic Bias and Ethical Issues| Questioning Artificial Intelligence: How Racial Identity Shapes the Perceptions of Algorithmic Biases_ES
dc.title.alternativeInternational Journal of Communicationes_ES
dc.typeArticlees_ES
Aparece en las colecciones: Documentos internacionales sobre libertad de expresión y derechos conexos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Questioning artificial.pdfQuestioning artificial1,31 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.